If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2-2a-38=0
a = 7; b = -2; c = -38;
Δ = b2-4ac
Δ = -22-4·7·(-38)
Δ = 1068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1068}=\sqrt{4*267}=\sqrt{4}*\sqrt{267}=2\sqrt{267}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{267}}{2*7}=\frac{2-2\sqrt{267}}{14} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{267}}{2*7}=\frac{2+2\sqrt{267}}{14} $
| 7a^2-2a-38=0 | | 3x-(5x-21)=6x+(9-4x | | 2t^2+4t=9t+18 | | 2t^2+4t=9t+18 | | 25a^2-81=0 | | 2m/5+3m/4=10 | | 2m/5+3m/4=10 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 2x+20=3x-6 | | 3n+4=7-2(n-2) | | 1=4u/7u | | 1=4u/7u | | 7u=4u | | 2(x-3)=18-5(x+4) | | 180-x=0.5x+9 | | 180-x=0.5x+9 | | 180-x=0.5x+9 | | 180-x=0.5x+9 | | 2x=9=8x=14 | | K-4=-9+k | | x÷13=-12 | | x÷13=-12 | | 3x+(32)=59 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (5x+2)^2+15+6=0 | | (a+1)^2=25 |